Finite Element Formulation

i.Surface diffusion equations

Surface diffusion leaves solid mass conserved. As matter diffuses on the surface, the
solid recedes where matter depletes, and protrudes where matter accumulates. The
change is purely kinematic.

Fig. 1. A surface in three dimensions.

Here, we assume that the free energy consists of surface energy only, and the surface
tension vy, is isotropic. For a polycrystalline particle, y can take different values on the
surface and on the grain boundaries.

The free energy of the particle is

G=Y yA (1)

The sum extends over all the surface and grain boundary areas, collectively denoted by
A.

Based on Herring’s classical theory, the flux of surface diffusion J is proportional to the
driving force F.

J=M.F (2)
Where,
M is the diffusion mobility of atoms on the surface
F is the driving force defined by the amount of free energy decrease associated wth a unit
volume of matter moving a unit distance on the surface.
The flux of surface diffusion J can also be written as
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Where,
the surface curvature g is positive when the surface is convex

0 s is the element of arc length.
v is the surface energy

The difference in chemical potential between a point of curvature x and a point of zero
curvature on the surface of the microcrack is given by

Ap=QyK 4)
From the above equations, we get

-F=V(Ap) = V(Qyx) )
Where,
V represents the surface divergence
The atoms diffuse from a point with high chemical potential (low curvature) to a point
with low chemical potential (high curvature).

Matter conservation requires that

Vis= - V.J (6)
Stns=- V.(3]) (7)
Where,

Vs is the normal velocity

V ] s the divergence of the surface flux
Orps 1S the/ virtual normal displacement
(o)  1is the virtual mass displacement

ii.Controlling equations
a. Weak statement for surface diffusion.

Following the principle of virtual work, we get
[Fs1da=-56 (8)

Where,
0G is the increment of free energy
dA is the differential area.

Substituting J=M.F in eq.(8), we get the weak statement.
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Once J is solved using the above equation, the surface normal velocity can be obtained
and used to update the solid shape.

b. Weak statement for combined surface diffusion and evaporation-
condensation.

The surface diffusion problem of conserving solid mass as formulated is difficult to
implement in a finite-element setting. However, evaporation condensation can be
introduced to facilitate the finite element implementation.

The normal velocity of the interface, V,,, is a function of the driving pressure p. For
simplicity, we adopt a linear law:

Vi =mp (10)

Where, m is the specific reaction rate or the interface mobility for the evaporation
condensation process.

This equation is valid when the structure is not far from equilibrium, namely, when the
free-energy reduction per adatom is small compared with the average thermal energy per
atom.

Surface normal velocity: Vin= Vs +Vuy (11)
Surface virtual displacement: Oy = Orpg + Oy (12)

Weak statement:

IS5 (v, + V., +V.(S51)]
avas
M m

1A = -G (13)

These are the equations due to combined action of evaporation condensation and surface
diffusion.



c. Model
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Fig. 2—An axisymmetric linear element.

The element, shown in figure 2 with nodes(x;,y;) and (X2,y2) with length 1 and slope 0,
can be modeled with 4 degree of freedom ( 8 x;.0 y1.0 X20 y2), and surface diffusion is
described by three degree of freedom( d1;,015,0ly,), where 01;,01; and 0l are the virtual
matter displacement of the two terminal nodes and the middle point of the element,
respectively.

Generalized virtual displacement 8q° and virtual velocity q° of the element can be
expressed by
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Where J;, J; and J,, are the matter flux of the two terminal nodes and the middle point of
the element, respectively.

At a distance s from the matter flux of the two terminal nodes, the following relations
hold for the virtual normal displacement, normal velocity, virtual matter displacement,
and surface flux.



or, = N,oX, + N,dy, + N;oX, + N,dy, (16)

V, =N, x, + N, y,+N,&, + N,d, (17)

ol =Q,d,+Q,d,+Q,d,, (18)
J=QJ,+Q,J,+Q,J,, (19)

Where the interpolation coefficients are given by
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For each element, the displacement of the nodes can be divided into two components
Ol — parallel to the element
or —normal to the element

as shown if figure 2.

Variation of free energy due to displacement of nodes parallel to the element



&y =2y, A, =2y, dl, (22)

Variation of free energy due to the displacement of nodes in the normal direction
IG; =y sin Ok, + yl sin G5, (23)

Variation of the total free energy can be expressed in terms of virtual motion of the nodes
&G° =—1f o — 0y, — f,%, — f,0, (24)

Where, f; are the force components acting on the two nodes due to surface tension and
stress field. They can be written as
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Wi = %[O-xigxi + Gyigyi ]+ [Txyigxyi ]

and 1 is defined by the node.
Extending the integral for the weak statement, we can obtain the controlling equation of
the finite element

He.qf = f°

Since the free energy depends on the solid shape, there are no forces associated with the
nodal mass change. The force vector can be written as

fe:[f1f20f3f400] (26)

The H matrix can be written as
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